непрерывные линейные отображения
Смотреть что такое "непрерывные линейные отображения" в других словарях:
Нормированное векторное пространство — У этого термина существуют и другие значения, см. Пространство. В нашем пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина… … Википедия
Линейное нормированное пространство — В евклидовом пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина нуль вектора, , равна нулю; длина любого другого вектора… … Википедия
Нормированное пространство — В трёхмерном пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина нуль вектора, , равна нулю; длина любого другого вектора… … Википедия
Функциональный анализ (математ.) — Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов… … Большая советская энциклопедия
Функциональный анализ — I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия
Газоразрядный индикатор — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия
ЛИНЕЙНЫЙ ОПЕРАТОР — линейное преобразование, отображение между двумя векторными пространствами, согласованное с их линейными структурами. Точнее, отображение где Еи F векторные пространства над полем k, наз. л и н е й н ы м оператором из Ев F, если при всех… … Математическая энциклопедия
Линейный функционал — Линейный функционал функционал, обладающий свойством линейности по своему аргументу: где линейный функционал, и функции из его области определения, число (к … Википедия
КУСОЧНО ЛИНЕЙНАЯ ТОПОЛОГИЯ — раздел топологии, изучающий полиэдры. Под полиэдром понимается прежде всего подмножество топологического векторного пространства, представимоо конечным или локально конечным объединением выпуклых многогранников ограниченной размерности, а также… … Математическая энциклопедия
Теория категорий — Теория категорий раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов. Теория категорий занимает центральное место в современной математике[1], она также нашла… … Википедия
Категория (математика) — Теория категорий раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов. Некоторые математики[кто?] считают теорию категорий слишком абстрактной и непригодной для… … Википедия